COMPONENTS:

- 1. Cadmium sulfite; CdSO₃; [13477-23-1]
- 2. Water; H₂O; [7732-18-5]

EVALUATOR:

H.D. Lutz, Dept. of Chemistry, University of Siegen, FR Germany.

October 1983

CRITICAL EVALUATION:

Cadmium sulfite crystallizes from aqueous solutions as hydrates and the anhydrous salt. Some are well established, such as ${\rm CdSO_3.3/2H_2O}$ (1,2) [60943-67-1] and several polymorphic forms of the anhydrous salt ${\rm CdSO_3}$, ${\rm I}(\alpha)$ (1), ${\rm II}$, and ${\rm III}$ (3). Numerical data on the solubility of cadmium sulfite in water and in the presence of ${\rm CdSO_4}$, ${\rm Na_2SO_3}$, and ${\rm Na_2SO_4}$, respectively, have been given by Margulis and Rodin (4), but from the data it is not clear what kind of solid phase was present in the solutions studied.

REFERENCES

- 1. Lutz, H.D.; El-Suradi, S. Z. Anorg. Allg. Chem. 1976, 425, 134.
- 2. Kiers, C.T.; Vos, A. Cryst. Struct. Commun. 1978, 7, 399.
- Lutz, H.D.; Buchmeier, W.; Eckers, W.; Engelen, B. Z. Anorg. Allg. Chem. 1983, 496, 21.
- 4. Margulis, E.V.; Rodin, I.V. Zh. Neorg. Khim. <u>1981</u>, 26, 1428; *Russ. J. Inorg. Chem. (Eng. Trans1.) <u>1981</u>, 26, 767.

COMPONENTS:

- 1. Cadmium sulfite; CdSO₃; [13477-23-1]
- 2. Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Margulis, E.V.; Rodin, I.V.

Zh. Neorg. Khim. 1981, 26, 1428-30; *Russ. J. Inorg. Chem. (Eng. Transl.)

<u>1981</u>, 26, 767-8.

VARIABLES:

Two temperatures: 293 and 363 K

PREPARED BY:

B. Engelen

EXPERIMENTAL VALUES:

t/°C	Cd ²⁺	CdSO ₃	$c(CdSO_3)^a$	m(CdSO ₃) ^a
	g/dm ³	mass %	$10^{-3} mol dm^{-3}$	10 ⁻³ mol kg ⁻¹
20	0.248	0.0426	2.21	2.21
90	0.232	0.0398	2.06	2.07

a Calculated by the compiler.

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:

Saturation method. Equilibrium was established by stirring the saturated solutions in closed thermostatically controlled glass tubes. Equilibrium was tested for analytically - 1 hr was reported to be sufficient. Cadmium was determined polarographically, sulfite iodometrically. For conversion into molality units, the density of the solutions was measured pyknometrically at room temperature.

SOURCE AND PURITY OF MAIERIALS:

Cadmium sulfite, claimed to be CdSO3.2H2O, was obtained by precipitation from $CdSO_4^2$ solutions with Na_2SO_3 . The precipitate was washed with water and dry acetone. $CdSO_4.8/3H_2O$ and Na_2SO_3 of p.a. quality were used.

ESTIMATED ERROR:

Temperature: $\pm 0.5 \text{ K}$ Solubility: 2.7×10^{-5} and 3.1×10^{-5} for molarity and molality units, respectively.

REFERENCES

COMPONENTS:

- 1. Cadmium sulfite; CdSO₃; [13477-23-1]
- 2. Cadmium sulfate; CdSO₄; [10124-36-4]
- 3. Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Margulis, E.V.; Rodin, I.V.

Zh. Neorg. Khim. 1981, 26, 1428-30; *Russ. J. Inorg. Chem. (Eng. Trans1.) 1981, 26, 767-8.

VARIABLES:

Two temperatures: 293 and 363 K Concentration of cadmium sulfate

PREPARED BY:

B. Engelen

EXPERIMENTAL VALUES:

t/°C	CdSO ₄	CdSO ₃ mass %	m(CdSO ₄) ^a mol kg ⁻¹	$m(CdSO_3)^a$ $10^{-3} mol kg^{-1}$
20	1.415	0.052	0.6889	2.742
20	5.31	0.056	0.2692	3.075
20	14.89	0.065	0.8399	3.971
20	31.61	0.087	2.220	6.618
20	43.51	0.106	3.702	9.768
90	36.83	0.083	2.801	6.836

a Calculated by the compiler.

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:

 CdSO_4 solutions were saturated with solid cadmium sulfite and stirred in a thermostatically controlled closed glass tube. Equilibrium was tested for analytically -1 hr was reported to be sufficient. Cadmium was determined polarographically, sulfite iodometrically. Sulfate determination method is not given. For conversion from g/dm^3 into mass \tilde{z} the density of the solutions was measured at room temperature.

SOURCE AND PURITY OF MATERIALS:

Cadmium sulfite, claimed to be CdSO3.2H2O, was obtained by precipitation from $CdSO_4^$ solutions with Na_2SO_3 . The precipitate was washed with water and dry acetone. $CdSO_4.8/3H_2O$ and Na_2SO_3 of p.a. quality were used.

ESTIMATED ERROR:

Temperature: 0.5 K

RUFERENCES:

COMPONENTS: 1. Cadmium sulfite; CdSO₃; [13477-23-1] 2. Sodium sulfite; Na₂SO₃; [7757-83-7]

3. Sodium sulfate; Na₂SO₄; [7757-82-6]

4. Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Margulis, E.V.; Rodin, I.V.

Zh. Neorg. Khim. 1981, 26, 1428-30; *Russ. J. Inorg. Chem. (Eng. Trans1.) 1981, 26, 767-8.

2 -

VARIABLES:

Temperature: 293 K (363 K)

Concentration of Na₂SO₃ and Na₂SO₄

PREPARED BY:

B. Engelen

EXPERIMENTAL VALUES:

KII BUILD TIEG					
Composition o	of the solution	ons (mass %)	m(Na ₂ SO ₃) ^a	m(Na ₂ SO ₄) ^a	m(CdSO ₃) ^a
Na ₂ SO ₃	Na ₂ SO ₄	CdSO3	m(Na ₂ SO ₃) ^a mol kg ⁻¹	m(Na ₂ SO ₄) ^a mol kg ⁻¹	$10^{-3} \text{ mol kg}^{-1}$
0.005	_	0.043	0.0003	_	2.236
0.300	_	0.040	0.0239	-	2.085
0.440	-	0.030	0.0351	-	1.566
0.700	_	0.029	0.0559	_	1.518
0.800	_	0.028	0.0640	_	1.467
1.643	_	0.036	0.1326	-	1.902
5.54	-	0.078	0.466	_	4.294
7.99	-	0.106	0.690	_	5.993
12.60	_	0.181	1.146	-	10.78
21.89.	-	0.220	2,230	-	14.68
21.89 ^b	-	0.217 ^b	2.230 ^b	-	14.47

- a Calculated by the compiler.
- b Experiment done at 90°C.

(continued on next page)

AUXILIARY INFORMATION

METHOD APPARATUS/PROCEDURE:

 ${\rm CdSO}_4$ solutions were saturated with solid cadmium sulfite and stirred in a thermostatically controlled closed glass tube. Equilibrium was tested for analytically - 1 hr was reported to be sufficient. Cadmium was determined polarographically, sulfite indometrically, and sodium photometrically. Sulfate determination method not given. For conversion from g x dm 3 into mass %, the density of the solutions was measured at room temperature.

SOURCE AND PURITY OF MATERIALS.

Cadmium sulfite, claimed to be ${\rm CdSO_3.2H_2O}$, was obtained by precipitation from ${\rm CdSO_4}$ solutions with ${\rm Na_2SO_3}$. The precipitate was washed with water and dry acetone. ${\rm CdSO_4.8/3H_2O}$, ${\rm Na_2SO_4.10H_2O}$, and ${\rm Na_2SO_3}$ of p.a. quality were used.

ESTIMATED ERROR:

Temperature: 0.5 K

REFERENCES:

COMPONENTS

- 1. Cadmium sulfite; CdSO₃; [13477-23-1]
- 2. Sodium sulfite; Na₂SO₃; [7757-83-7]
- 3. Sodium sulfate; Na_2SO_4 ; [7757-82-6]
- 4. Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Margulis, E.V.; Rodin, I.V.

Zh. Neorg. Khim. 1981, 26, 1428-30; *Russ. J. Inorg. Chem. (Eng. Trans1.) 1981, 26, 767-8.

EXPERIMENTAL VALUES (continued):

Composition of	the solutions	(mass %)	m(Na ₂ SO ₃) ^a	$m(Na_2SO_4)^a$	m(CdSO ₃) ^a
Na_2SO_3	Na ₂ SO ₄	$CdSO_3$	$mol kg^{-1}$	mol kg ⁻¹	$10^{-3} \text{ mol kg}^{-1}$
_	1.011	0.045	_	0.0719	2.363
-	4.11	0.048	-	0.302	2.602
_	7.30	0.055	-	0.555	3.085
_	10.21	0.062	_	0.8011	3.590
_	15.35	0.078.	-	1.278,	4.792
-	28.62 ^b	0.098 ^b	-	2.827 ^b	7.143
0.005	1.5	0.048	0.0403	0.107	2.533
0.005	4.5	0.050	0.0416	0.332	2.722
0.005	5.8	0.051	0.0421	0.434	2.815
0.005	7.2	0.057	0.0428	0.547	3.194
0.300	1.5	0.042	2.425	0.108	2.223
0.300	4.5	0.044	2.501	0.333	2.403
0.300	5.8	0.047	2.536	0.435	2.602
0.300	7.2	0.049	2.575	0.548	2.754
0.440	1.5	0.033	3.561	0.108	1.749
0.440	4.5	0.038	3.674	0.333	2.078
0.440	5.8	0.042	3.725	0.436	2.329
0.440	7.2	0.045	3.782	0.549	2.533
0.700	1.5	0.031	5,680	0.108	1.647
0.700	4.5	0.035	5.861	0.334	1.919
0.700	5.8	0.037	5.942	0.437	2.060
0.700	7.2	0.041	6.033	0.551	2.314
0.800	1.5	0.030	6.499	0.108	1.596
0.800	4.5	0.034	6.705	0.335	1.866
0.800	5.8	0.037	6.798	0.437	2,059
0.800	7.2	0.040	6.902	0.551	2,260

^a Calculated by the compiler.

b Experiment done at 90°C.